skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wu, Denny"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2026
  2. Many recent works have studied the eigenvalue spectrum of the Conjugate Kernel (CK) defined by the nonlinear feature map of a feedforward neural network. However, existing results only establish weak convergence of the empirical eigenvalue distribution, and fall short of providing precise quantitative characterizations of the “spike” eigenvalues and eigenvectors that often capture the low-dimensional signal structure of the learning problem. In this work, we characterize these signal eigenvalues and eigenvectors for a nonlinear version of the spiked covariance model, including the CK as a special case. Using this general result, we give a quantitative description of how spiked eigenstructure in the input data propagates through the hidden layers of a neural network with random weights. As a second application, we study a simple regime of representation learning where the weight matrix develops a rank-one signal component over training and characterize the alignment of the target function with the spike eigenvector of the CK on test data. 
    more » « less
  3. Oh, A; Naumann, T; Globerson, A; Saenko, K; Hardt, M; Levine, S (Ed.)
    We consider the problem of learning a single-index target function f∗ : Rd → R under the spiked covariance data: f∗(x) = σ∗   √ 1 1+θ ⟨x,μ⟩   , x ∼ N(0, Id + θμμ⊤), θ ≍ dβ for β ∈ [0, 1), where the link function σ∗ : R → R is a degree-p polynomial with information exponent k (defined as the lowest degree in the Hermite expansion of σ∗), and it depends on the projection of input x onto the spike (signal) direction μ ∈ Rd. In the proportional asymptotic limit where the number of training examples n and the dimensionality d jointly diverge: n, d → ∞, n/d → ψ ∈ (0,∞), we ask the following question: how large should the spike magnitude θ be, in order for (i) kernel methods, (ii) neural networks optimized by gradient descent, to learn f∗? We show that for kernel ridge regression, β ≥ 1 − 1 p is both sufficient and necessary. Whereas for two-layer neural networks trained with gradient descent, β > 1 − 1 k suffices. Our results demonstrate that both kernel methods and neural networks benefit from low-dimensional structures in the data. Further, since k ≤ p by definition, neural networks can adapt to such structures more effectively. 
    more » « less